Interpreting Expression Data with Metabolic Flux Models: Predicting Mycobacterium tuberculosis Mycolic Acid Production
نویسندگان
چکیده
Metabolism is central to cell physiology, and metabolic disturbances play a role in numerous disease states. Despite its importance, the ability to study metabolism at a global scale using genomic technologies is limited. In principle, complete genome sequences describe the range of metabolic reactions that are possible for an organism, but cannot quantitatively describe the behaviour of these reactions. We present a novel method for modeling metabolic states using whole cell measurements of gene expression. Our method, which we call E-Flux (as a combination of flux and expression), extends the technique of Flux Balance Analysis by modeling maximum flux constraints as a function of measured gene expression. In contrast to previous methods for metabolically interpreting gene expression data, E-Flux utilizes a model of the underlying metabolic network to directly predict changes in metabolic flux capacity. We applied E-Flux to Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB). Key components of mycobacterial cell walls are mycolic acids which are targets for several first-line TB drugs. We used E-Flux to predict the impact of 75 different drugs, drug combinations, and nutrient conditions on mycolic acid biosynthesis capacity in M. tuberculosis, using a public compendium of over 400 expression arrays. We tested our method using a model of mycolic acid biosynthesis as well as on a genome-scale model of M. tuberculosis metabolism. Our method correctly predicts seven of the eight known fatty acid inhibitors in this compendium and makes accurate predictions regarding the specificity of these compounds for fatty acid biosynthesis. Our method also predicts a number of additional potential modulators of TB mycolic acid biosynthesis. E-Flux thus provides a promising new approach for algorithmically predicting metabolic state from gene expression data.
منابع مشابه
Flux Balance Analysis of Mycolic Acid Pathway: Targets for Anti-Tubercular Drugs
Mycobacterium tuberculosis is the focus of several investigations for design of newer drugs, as tuberculosis remains a major epidemic despite the availability of several drugs and a vaccine. Mycobacteria owe many of their unique qualities to mycolic acids, which are known to be important for their growth, survival, and pathogenicity. Mycolic acid biosynthesis has therefore been the focus of a n...
متن کاملEssentiality of mmpL3 and impact of its silencing on Mycobacterium tuberculosis gene expression
MmpL3 is an inner membrane transporter of Mycobacterium tuberculosis responsible for the export of trehalose momomycolate, a precursor of the mycobacterial outer membrane component trehalose dimycolate (TDM), as well as mycolic acids bound to arabinogalactan. MmpL3 represents an emerging target for tuberculosis therapy. In this paper, we describe the construction and characterization of an mmpL...
متن کاملThe Assessment of Viability of M. Tuberculosis after Exposure to CPC Using Different Methods
Settings. National Institute for Research in Tuberculosis, Chennai. Objective. To assess the proportion of metabolically active cells of Mycobacterium tuberculosis after exposed to CPC using FDA-EB vital staining and viable counts on LJ medium. Mycolic acid content in M. tuberculosis after exposure to CPC was estimated using HPLC. Methods. Clinical isolates of M. tuberculosis and standard refer...
متن کاملMmpL Genes Are Associated with Mycolic Acid Metabolism in Mycobacteria and Corynebacteria
Mycolic acids are vital components of the cell wall of the tubercle bacillus Mycobacterium tuberculosis and are required for viability and virulence. While mycolic acid biosynthesis is studied extensively, components involved in mycolate transport remain unidentified. We investigated the role of large membrane proteins encoded by mmpL genes in mycolic acid transport in mycobacteria and the rela...
متن کاملBinding of activated isoniazid with acetyl-CoA carboxylase from Mycobacterium tuberculosis
AccD6 (acetyl coenzyme A (CoA) carboxylase), plays an important role in mycolic acid synthesis of Mycobacterium tuberculosis (Mtb). Induced gene expression by isoniazid (isonicotinylhydrazine - INH), anti-tuberculosis drug) shows the expression of accD6. It is our interest to study the binding of activated INH with the AccD6 model using molecular docking procedures. The study predicts a primary...
متن کامل